

ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility

Yunsheng Tian¹, Karl D.D. Willis², Bassel Al Omari³, Jieliang Luo², Pingchuan Ma¹, Yichen Li¹, Farhad Javid², Edward Gu¹, Joshua Jacob¹, Shinjiro Sueda⁴, Hui Li², Sachin Chitta², Wojciech Matusik¹

¹MIT CSAIL ²Autodesk Research ³University of Waterloo ⁴Texas A&M University

asap.csail.mit.edu

Motivation

In manufacturing industry, the assembly process is usually planned by humans with hardcoded instructions.

Labor-intensive Slow Tedious Error-prone Inflexible

Motivation

Failures could easily happen during assembly without careful planning ...

Failure 1: Sequence is not geometrically feasible due to part precedence

Failure 2: Sequence is not stable under gravity

Target

Failure 3: Only a few parts can be held simultaneously (Switching hands to other parts will fail)

Success: The assembly sequence is **physically feasible** only if the assembly order is correct, collision-free paths can be found, poses are stable, and proper parts are held

Challenges

How to solve for such physically feasible plans <u>autonomously</u>?

Is it possible to generalize to many more complex assemblies?

Related Works

Bar Structure Assembly [Huang et al. 2021]

Lego Brick Assembly [Nagele et al. 2020]

Aluminum Profile Assembly [Rodriguez et al. 2019]

Not designed for general assemblies

Related Works

Assemble Them All [Tian et al. 2022]

Not applicable to real world with gravity & robots

Our contributions

- An automated approach for generating physically feasible assembly sequences
- Efficient planning through tree-search, geometric heuristics, and graph neural networks
- Stability guarantee considering supporting surface and grippers
- Integrated grasp planning and inverse kinematics for robotic execution
- SOTA performance on hundreds of complex product assemblies

Problem Setup

Input & output

(Optional)

Problem Setup

Assembly by disassembly

Disassembly Planning

Reverse Plans

Disassembly tree search

Bottom: disassembled

Part selection

FEATURES

Geometric heuristics: distance of COM to assembly center, part volume, etc.

Learning-based guidance: GNN trained from simulation labels to suggest next parts to disassemble.

MLP

Classifier

Pose selection

Quasistatic pose estimator for generating stable pose candidates

Pose reuse: try sticking with the same pose as much as possible

Feasibility evaluation: assemblability

Assemble Them All [Tian et al. 2022]

Feasibility evaluation: stability

Physics-based simulation

Check if any parts fall after certain time steps

Evaluate stability conditioned on the pose and parts to hold

Part-holding strategy

Identify which parts are to be held (by grippers/fixtures)

How to hold N parts by M fixtures?

# Parts to Hold	Acc. (%)	Speed Up	
2	89.0	13.90x	
3	90.5	17.03x	
4	94.7	23.04x	

Greedy strategy compared to combinatorial strategy

Quantitative evaluation

Method		Success Rate (%) (Low Budget)		Success Rate (%) (High Budget)			
			5 Faits field	4 Faits Helu	2 Faits Helu	5 Faits field	4 Faits field
ASAP (Ours)	Heuristics	51.25	61.25	68.75	66.67	74.17	80.83
	Learning	54.58	62.92	69.58	67.08	76.25	82.08
Baseline	Random Permutation	14.58	25.42	41.25	27.92	43.33	55.42
	Genetic Algorithm [9]	14.17	25.83	40.00	30.83	41.25	51.25
	Assemble Them All [5]	19.17	27.08	35.42	30.42	46.25	56.67

Distribution of Assemblies by Number of Parts

Qualitative evaluation

Qualitative comparison

Robotic execution – simulation

Robotic execution - real world

Fast and robust physics simulation

Factory [Narang et al. 2022]

Affine Body Dynamics [Lan et al. 2022]

Learning from human demonstration

Disassemble this assembly

Which part would you remove next while keeping the rest of the assembly intact?

GNN can be trained from human-annotated labels to suggest next parts to disassemble

Design tool integration

- Assembly manual generation
- Design feasibility verification
- Design-to-manufacturing

Autodesk Fusion 360

Real robot deployment

Sim2real

Grasp Planning

Multi-Arm Collaboration

Fixture Generation

Collaborators

Karl D.D. Willis²

Bassel Al Omari³

Jieliang Luo²

Pingchuan Ma¹

Yichen Li¹

Farhad Javid²

Edward Gu¹

Joshua Jacob¹ Shinjiro Sueda⁴

Hui Li²

Sachin Chitta²

Wojciech Matusik¹

¹MIT CSAIL ²Autodesk Research ³University of Waterloo ⁴Texas A&M University

Thank You

asap.csail.mit.edu

