

ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility

Yunsheng Tian¹, Karl D.D. Willis², Bassel Al Omari³, Jieliang Luo², Pingchuan Ma¹, Yichen Li¹, Farhad Javid², Edward Gu¹, Joshua Jacob¹, Shinjiro Sueda⁴, Hui Li², Sachin Chitta², Wojciech Matusik¹

¹MIT CSAIL ²Autodesk Research ³University of Waterloo ⁴Texas A&M University

asap.csail.mit.edu

Motivation

In manufacturing industry, the assembly process is usually planned by humans with hardcoded instructions.

Labor-intensive Slow Tedious Error-prone Inflexible

Motivation

Failures could easily happen during assembly without careful planning …

Failure 1: Sequence is not geometrically feasible due to part precedence

Failure 2: Sequence is not stable under gravity

Target

Failure 3: Only a few parts can be held simultaneously (Switching hands to other parts will fail)

Success: The assembly sequence is **physically feasible** only if the assembly order is correct, collision-free paths can be found, poses are stable, and proper parts are held

Challenges

How to solve for such physically feasible plans **autonomously?**

Is it possible to generalize to many more complex assemblies?

Related Works

Bar Structure Assembly [Huang et al. 2021]

Lego Brick Assembly [Nagele et al. 2020]

Aluminum Profile Assembly [Rodriguez et al. 2019]

Not designed for general assemblies

Related Works

Assemble Them All [Tian et al. 2022]

Not applicable to real world with gravity & robots

Our contributions

- An automated approach for generating physically feasible assembly sequences
- Efficient planning through tree-search, geometric heuristics, and graph neural networks
- Stability guarantee considering supporting surface and grippers
- Integrated grasp planning and inverse kinematics for robotic execution
- SOTA performance on hundreds of complex product assemblies

Problem Setup

Input & output

(Optional)

Problem Setup

Assembly by disassembly

Disassembly Planning

Reverse Plans

Disassembly tree search

Bottom: disassembled

Part selection

Geometric heuristics: distance of COM to assembly center, part volume, etc.

ASSEMBLY GRAPH CF **MLP GNN** Encoder Classifier PART CUSTOM **FEATURES**

Learning-based guidance: GNN trained from simulation labels to suggest next parts to disassemble.

Pose selection

Quasistatic pose estimator for generating stable pose candidates

Pose reuse: try sticking with the same pose as much as possible

Feasibility evaluation: assemblability

Assemble Them All [Tian et al. 2022]

Feasibility evaluation: stability

Physics-based simulation

Check if any parts fall after certain time steps

Evaluate stability conditioned on the pose and parts to hold

g

Part-holding strategy

Identify which parts are to be held (by grippers/fixtures)

How to hold *N* parts by *M* fixtures?

Greedy strategy compared to combinatorial strategy

Quantitative evaluation

Qualitative evaluation

Qualitative comparison

Robotic execution – simulation

Robotic execution – real world

Fast and robust physics simulation

Factory [Narang et al. 2022] Affine Body Dynamics [Lan et al. 2022]

Learning from human demonstration

Disassemble this assembly

Which part would you remove next while keeping the rest of the assembly intact?

GNN can be trained from human-annotated labels to suggest next parts to disassemble

Design tool integration

- Assembly manual generation
- Design feasibility verification
- Design-to-manufacturing

Autodesk Fusion 360

Real robot deployment

Sim2real

Grasp Planning

Multi-Arm Collaboration

Fixture Generation

Collaborators

Karl D.D. Willis² Bassel Al Omari³

Jieliang Luo² Pingchuan Ma¹ Yichen Li¹ Farhad Javid²

Edward Gu¹ Joshua Jacob¹ Shinjiro Sueda⁴ Hui Li² Sachin Chitta² Wojciech Matusik¹

¹MIT CSAIL ²Autodesk Research ³University of Waterloo ⁴Texas A&M University

Thank You

asap.csail.mit.edu

